Turbulence Modeling of Complex Flows in CFD
نویسندگان
چکیده
In the last two decades of the 20th century, the world had witnessed the enormous increase in the computational resources. This has brought in the tremendous increase in human knowledge and understanding of complex phenomenon, like turbulence and its modeling among others. The technical development has brought new challenges in engineering design. Whether we limit ourselves to the earthly matters or indulge in space exploration, the simulation of turbulence has become a routine task. Turbulence is a phenomenon in nature comprising of complex eddy structures which can greatly improve heat and mass transfer. The simplistic approach for the computation of turbulent flows is to compute them by Reynolds Averaged Navier-Stokes (RANS) equations based models. But due to the averaging procedure, the inherent unsteadiness of the flow is compromised. On the other hand, Direct Numerical Simulation (DNS) is the best approach for turbulent flow computations, in which no modeling assumptions are invoked and turbulent eddies as small as of the order of Kolmogorov scale are computed. The middle approach between these extremes is the Large Eddy Simulation (LES), in which part of the turbulence is modeled and rest is computed. However, the computational costs and memory requirement are still too large to take it as a general purpose engineering design tool. In this thesis, the effect of changes in inflow conditions on the heat transfer by an impinging jet is investigated using LES. The Dynamic Smagorinsky model proposed by Germano et al. has been used as a subgrid model. Results of several Large Eddy Simulations are reported in the thesis, which are conducted with use of total 244 processors on high performance computing clusters. The inflow conditions explored are: • The fully developed turbulent jet
منابع مشابه
AIAA 2002-3124 The DG/VMS Method for Unified Turbulence Simulation
The high cost of wind tunnel testing and the ongoing reduction in national wind tunnel facilities are forcing the aerospace engineering community to increasingly rely on computational fluid dynamics (CFD) to predict the performance of new aircraft designs. However, most aerospace applications are characterized by flows that exhibit large-scale unsteady turbulence and the accurate prediction of ...
متن کاملNumerical Predictions of Turbulent Mixed Convection Heat Transfer to Supercritical Fluids Using Various Low Reynolds Number k-e Turbulence Models
There are a number of systems in which supercritical cryogenic fluids are used as coolants or propellant fluids. In some modern military aircraft, the fuel is pressurized above its critical point and used as a coolant to remove heat from the aircraft engine. Accurate prediction of heat transfer coefficients to turbulent flows of supercritical fluids is essential in design of such systems. One o...
متن کاملApplication of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries
In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...
متن کامل2DV Nonlinear k-ε Turbulence Modeling of Stratified Flows
The commonly used linear k-ε turbulence model is shown to be incapable of accurate prediction of turbulent flows, where non-isotropy is dominant. Two examples of non-isotropic flows, which have a wide range of applications in marine waters, are saline water flow and the stratified flows due to temperature gradients. These relate to stratification and consequently, variation of density through...
متن کاملThe Legacy and Future of Cfd at Los Alamos
The early history is presented of the prolific development of CFD methods in the Fluid Dynamics Group (T-3) at Los Alamos National Laboratory in the years from 1958 to the late 1960's. Many of the currently used numerical methods –PIC, MAC, vorticity-stream-function, ICE, ALE methods and the k-ε method for turbulence– originated during this time. The rest of the paper summarizes the current res...
متن کاملCFD analyses of complex flows
Computational fluid dynamics (CFD) of complex processes and complicated geometries embraces the transport of momentum, heat, and mass including the description of reaction kinetics and thermodynamics. The paper outlines the numerical models available for analyzing these processes and presents examples of such methodology. The unprecedented growth in computer capability has resulted in efficient...
متن کامل